Showing posts with label online education. Show all posts
Showing posts with label online education. Show all posts

Friday, July 27, 2012

Friday Links: Online education, crime algorithm, health care


I was looking at my Blogger stats and discovered that someone found my site by googling "help i'm addicted to wasting time on the internet." I googled it and asked an acquaintance to do the same (since Google results are personalized), and it turns out my article on Internet time-wasting is hit #3-#5, depending on who searches for it. Nice. Interestingly, it goes down with "i'm addicted to wasting time to the Internet," and doesn't come up if you just google "addicted to wasting time on the internet."


Those who started reading my blog from the beginning know that I started off by explaining an interesting example from an online course on Coursera. To me, online courses are one way of exposing my mind to new ideas that break my preconceptions and defy conventional wisdom. Letting go of long-held ideas is critical to getting anywhere in science. But while I currently treat online education as a fun side project, there is a good debate going on as to what the role of online education will be in general for K-12 and college. Since it's the new thing, everyone wants to know to what extent it will replace traditional classroom learning. In this NY Times article Mark Edmundson, a professor at University of Virginia appears to argue against the widespread use of online education, saying there's nothing you can get from an online course that you can't get from a good book. I largely disagree.

I agree only with his thesis, "But can online education ever be education of the very best sort?" Well sure, it can't be the BEST by itself, but it sure beats the average educational experience in the US. In my opinion, education isn't about learning facts, it's about learning how to make arguments and how to understand and solve problems. And yes (agreeing with Edmundson), this can't be accomplished in a one-way didactic lecture. It needs dialogue and requires students to get to the answer themselves, with proper cultivation from the professor. However, I disagree that this says anything about the value of online education in the grand scheme of things. I don't think online education is meant to completely replace classroom learning, and certainly won't replace the best professors at the best universities. Learning how to solve problems requires some starting facts (and in science, LOTS of starting facts), and those facts should be communicated in the most efficient and organized manner. When done properly, one-way didactic lectures synergize with books (rather than being redundant). And no, I don't find it likely that every teacher individually optimizes the communication of those facts. Furthermore, in many school systems this is so inefficient that they spend all their time lecturing facts and no time on critical thinking. Only a few lucky students get real dialogue learning, since you inherently need small classroom sizes for that. Thus online education, taught by THE best educators (like, the best in the world), would go a long way to improving K-12 education. Then teachers can focus on problem solving sessions rather than lecturing facts.

I envision two parts to future education (both K-12 and college): 1) one-way lectures taught by the very best people who have developed the best ways to explain something. These can be online and available for everyone in the world. 2) actual teachers or TAs that focus entirely on face-to-face dialogue. They don't provide any actual information- they present a problem and work with the students to reason through the problem, using information that they learned in the lectures. They are more like older colleagues than anything else. In college, I often learned way more in small discussion sections than in lecture. Lectures are necessary but not sufficient for education.

In fact, when I served as a TA, there was one module that I didn't know anything about. So what did I do? I studied it just enough to get an intuitive feel for it, and then I just pummeled my students with questions while working through problems. I didn't provide a single answer for them (because I didn't know how to solve the problem), and if they asked a question I just asked a question back. The result? In my student evaluations, they specifically mentioned how well I taught that module. Real teachers don't need to know the answer.


A crime-prediction algorithm takes crime data and balances information on the day, week, month, year, and decade scale to figure out where crime is statistically most likely to strike next in the city. Maybe a certain part of the city sees more crime frequently around the holidays, for example. Humans can't physically process and balance all of the data, so let a computer do it. This leaves more time for humans to do what they do best- interact with other humans. They show up, talk to people, and just by having a presence decrease crime.


Blog of a die-hard conservative Republican who moves to Canada and of course fears Universal Health Care. However, she soon discovers it's great and that more government control = more freedom for individuals to choose. A far more complicated issue than I'd want to address in a Friday Links entry.

Other random links:


Saturday, May 5, 2012

Blog launch; people aren't that racist

Hello! I heard it's a good idea to have a (flexible) purpose in mind when starting a new venture, so here are my reasons for starting a blog- I suspect these are common to many bloggers.
1) Share things I find interesting. Usually these involve things that defy conventional wisdom (e.g. segregation, see below)
2) Share things I'm working on to improve myself. Writing it out helps me think about it, keeps me honest, invites feedback, and maybe gives others some ideas. I have so many general goals, such as reading more, keeping a diary, getting comfortable talking to strangers, pre-defining my goals for the day/week/month, etc. But I hope that having a defined task such as a blog entry will help motivate me.
3) Improve my writing skills and stimulate my mind. Pushing myself to generate interesting blog posts will force me to look into things I'm unfamiliar with.
4) Eliminate any residual fear of having my ideas be judged by others.
So, now see below for my first real blog post!
__________________________________________________________________
Intro
In my free time I've been looking into the recent explosion of startups and non-profits offering online courses, including Coursera, Udacity, and edX. These offer full-semester-long courses, given by full professors at top colleges, complete with lectures, quizzes, problem sets, and final exams, and available to everyone for free. I'd argue these are going to be a lot more effective than traditional classroom learning, where half the students are on the Internet anyways NOT learning.
So right now I'm taking Model Thinking on Coursera, and I'd have to say the interface is a lot more engaging than the majority of in-person teachers I've had. The course is a personal project of Scott Page, a professor at the University of Michigan. And it's not just a video of the courses he normally teaches- you can see him directly talking to you, his pre-prepared slides, and the stuff he writes on the slides as he talks to you in real time. And yes, you can speed it up (2X max).
I hope that Model Thinking will help me think as a scientist and an intellectual, rather than just as a worm geneticist. I also like that models can lead us to unexpected conclusions, so I will share one of the first models presented in the class: Schelling's Model of Segregation.
The model
The question behind Schelling's Model of Segregation is: We all know that many (most) cities in the US are highly segregated, along lines of race, income, etc. Blacks might on average have 80% black neighbors, while whites might on average have 80% white neighbors. Why? Is it just because they are racist and like their own kind? You might think that if people want 80% of the people near them to look like them, and people are freely moving, then on average people will have 80% of their neighbors look like them. But let's do some modeling.
We have X number of people in a hypothetical city, and a grid of X homes that they can occupy. Each person is given the choice to move or stay, based on their neighborhood percentage of people who look like them, call that P. Let's say they will move to a new home if P is lower than a threshold T. In the real world, this means a person looks at his/her own neighbors, and gets a little spooked by the number of people who don't look like them, and moves. This is applied iteratively, since as one person moves that might cause others to move as well => this is a simulation.
Let's say that T is 30%. In a city of half whites and half blacks, that in fact is very much UN-racist. In fact, they would tolerate being in the MINORITY in their neighborhood. People only need 30% of their neighbors to look like them for them to stay. If you run the simulation (use a computer program), what do you get as the end result? >75% segregation. In other words, on average each person has 75% same-race neighbors.
How can this be? We already said that people don't mind being in the minority, and they are at most minimally-racist. How did we end up with major segregation without any other factors at play?
If we think carefully about the model, there are two tipping points that bias in favor of segregation. Essentially, the effect of any one person moving gets amplified.
  1. Exodus Tip: A person moves out of a neighborhood. For their original same-race neighbors that may decrease their percentage below their Threshold T. For example 3/8 > 30% becomes 2/7 < 30%.
  2. Genesis Tip: That person moves into a new neighborhood. For their new different-race neighbors, that may decrease their percentage below threshold T. For example 2/6 > 30% becomes 2/7 < 30%.

These are kind of common sense, but it's hard to fully appreciate the domino effect this can have.
Once one person moves, another moves, then another moves. The end result is segregation. In fact, if we only have the requirement that people don't want to be in the minority, i.e. people only want at least 50% of their neighbors to be of the same race, what happens? The end result is that 90% of a person's neighbors ends up being of the same race.

Finally, the kicker. What happens if people ARE really racist? What if they have a requirement that 95% of the people near them have to be of the same race? Here's another thing that completely defies conventional wisdom: you DON'T GET SEGREGATION!!

This blog post is getting long, so I'll let my readers figure out why HIGH LEVELS OF RACISM leads to situations where there is NO SEGREGATION.

Anticipated rebuttal

I'm sure you have a rebuttal to all this. That there are many other factors at play that might allow racism to be the primary explanation for segregation, i.e. racist laws, rent, gentrification, etc. Fair points- it is POSSIBLE for racism to explain segregation. But it is still valid to say that just because there is segregation arising from individual behavior, we shouldn't assume that individuals are racist.

Furthermore, this highlights the importance of models. This model left things like rent and gentrification out of the equation. It made some assumptions that may not be entirely true. But all that is besides the point. The act of laying out assumptions and taking them to their logical conclusion helps us think about a problem. In the end, we may end up keeping or throwing out some of our assumptions, and deciding that we need more data on the things we left out of the model. And in the end, we're all the better for it. We made progress.

___________________________________________________________

Conclusion

I hope that the models I learn the Model Thinking class will be fertile, i.e. they will be applicable to biology and medicine even though many of them were developed for economics and social science. A PhD is a fantastic time to explore all sorts of things that interest me and develop a variety of skills, because I have control over my own time. This will be an adventure, and I hope you'll join me.

About Me

MD/PhD student trying to garner attention to myself and feel important by writing a blog.

Pet peeves: conventional wisdom, blindly following intuition, confusing correlation for causation, and arguing against the converse

Challenges
2013: 52 books in 52 weeks. Complete
2014: TBA. Hint.

Reading Challenge 2013

2013 Reading Challenge

2013 Reading Challenge
Albert has read 5 books toward his goal of 52 books.
hide

Goodreads

Albert's bookshelf: read

Zen Habits - Handbook for Life
5 of 5 stars true
Great, quick guide. I got a ton of work done these past two weeks implementing just two of the habits described in this book.
The Hunger Games
5 of 5 stars true
I was expecting to be disappointed. I wasn't.

goodreads.com